Rabu, 23 November 2016

Life Cycle Impact Assessment - Exercise

Exercise 4.1 Energy and CO2 Balance of a Gold Ring
Assume that your friend living in California has just ordered a gold wedding ring weighing 6 g. Since it is the week before the wedding(!), the ring must be flown 10,000 km by plane from the Netherlands (where it was made) to California. The manufacturing of the ring requires an electricity consumption of 2 kWh per kilogram of gold and it will eventually be buried (equivalent to being landfilled for this
example). Assuming an FU of one ring over the course of one marriage, calculate the reference flows, nonrenewable energy use, and CO2 emissions over the whole life cycle. Fill in all missing values in Table 4.14.

Table 4.14
Life Cycle Stage
Process
Unit
Energy (MJ/unit)
CO2 (kg/unit)
Reference Flow (unit/FU)
Energy (MJ/FU)
CO2 (kg/FU)
Raw materials extraction
Gold
kg
269000
16500
0.006
1614
99
Fabrication
Electricity
kWh
10.71
0.66
0.012
0.12852
0.00792
Transport
By airplane
ton-km
16.23
1.06
0.06
0.9738
0.0636
Elimination
Landfill
kg
0.2
0.01
0.006
0.0012
0.00006
Total





1615.10352
99.07158

Exercise 4.3 - Hand-Dryer: Energy and CO2 Balance
Consider the hand-drying scenarios discussed in Chapter 3. Use the reference flows and flowchart from Exercise 3.2 and the emission factors from Table 4.15. Assume that the manufacturing energy for both devices accounts for less than 1% of total life cycle energy consumption and emissions.
  1. Using Table 4.15, estimate the nonrenewable primary energy used and the CO2 emissions due to each hand-dryer scenario (fill in Table 4.16).
  2. For each process and for the sum of all processes, calculate the ratio of CO2 emissions to nonrenewable primary energy. Check if the value obtained for each ratio are consistent with typical values shown in Figure 4.2.


Hot-Air Dryer
Life Cycle Stage

Process (unit)
Quantity per FU
(unit per FU)
Energy per Unit (MJ/unit)
Energy per FU (MJ/FU)
Emissions per Unit (kgCO2/unit)
Emissions per FU (kgCO2/FU)
Check (gCO2/MJ)
Materials







Iron
kg
8
64.3
514.4
3.9
31.2
60.65318818
Steel
kg
4
24.6
98.4
1.51
6.04
61.38211382
Fabrication







Cast Iron
-
-





Transport
ton-km
1.2
3.7
4.44
0.215
0.258
58.10810811
Use
kWh
5475
12.4
67890
0.703
3848.925
56.69354839
Elimination







     Steel
kg
4
0.204
0.816
0.007
0.028
34.31372549
Avoided energy







Total



68508.056

3886.451


Paper Towel
Life Cycle Stage
Process (unit)
Quantity per FU (unit per FU)
Energy per Unit (MJ/unit)
Energy per FU (MJ/FU)
Emissions per Unit (kgCO2/unit)
Emissions per FU (kgCO2/FU)
Check (gCO2/MJ)
Materials







PP (plastic)
kg
6
97.5
585
3.11
18.66
31.8974359
Fabrication
-






Transport
ton-km
0.6
3.7
2.22
0.215
0.129
58.10810811
Use







Paper
kg
1960.05
17.2
33712.86
0.86
1685.643
50
Elimination







Paper landfilled
kg
1960.05
0.447
876.14235
0.015
29.40075
33.55704698
PP landfilled
kg
6
0.33
1.98
0.03
0.18
90.90909091
Avoided energy
-






Total



35176.22235

1733.83275



Perbandingan dengan figure 4.2 untuk emisi per energi
Untuk penggunaan hot air dryer
  •  penggunaan transportasi untuk hot air dryer  58.108 gCO2/MJ yang termasuk dalam rentang rasio yang pada figure 4.2 yakni 55-70 gCO2/MJ.

Untuk penggunaan paper towel:
  • penggunaan plastik untuk paper towel sebesar 31,897 gCO2/MJ lebih besar dari penelitian sebelumnya yakni 30 gCO2/MJ. Hal ini bisa saja terjadi karena penggunaan material plastic pada figure 4.2 lebih sedikit. Dapat disimpulkan bahwa emisi yang dihasilkan lebih buruk dari standar yang ditentukan oleh penelitian sebelumnya (figure 4.2)
  • penggunaan transportasi untuk paper towel sebesar 58,108 gCO2/MJ yang masuk dalam rentang yang sudah distandarkan.
  • untuk proses pembuangan plastic emisi yang dihasilkan 90,909 gCO2/MJ lebih besar dari standar pada penelitian (figure 4.2) yakni 60 gCO2/MJ. Dapat disimpulkan bahwa emisi yang ditimbukan dari plastic yang di landfill pada produk hot air dryer lebih buruk.


3. Now assume that the wastepaper towels, when incinerated, produce 18 MJ of energy per kilogram burned, 20% of which is recovered as usable electricity. Calculate how much nonrenewable primary energy you avoid per kilogram of paper burned, and use this to calculate the avoided energy per FU in the table.
4. Which scenario is better for energy and CO2? Which stages of the life cycle and which components are most important? What is the importance of the paper towel dispenser or of the electric dryer compared with the other life cycle stages?

Life Cycle Stage
Process (unit)
Quantity per FU (unit per FU)
Energy per Unit (MJ/unit)
Energy per FU (MJ/FU)
Emissions per Unit (kgCO2/unit)
Emissions per FU (kgCO2/FU)
Check (gCO2/MJ)
Materials







     PP (plastic)
kg
6
97.5
585
3.11
18.66
31.8974359
Fabrication
-






Transport
ton-km
0.6
3.7
2.22
0.215
0.129
58.1081081
Use







     Paper
kg
1960.05
17.2
33712.86
0.86
1685.643
50
Elimination







     Incinerated Paper
kg
1960.05
0.292
572.3346
0.018
35.2809
61.6438356
     PP landfilled
kg
6
0.33
1.98
0.03
0.18
90.9090909
Avoided energy







     Incinerated Paper
kg
1960.05
-3.6
-7056.18



Total



27818.2146

1739.8929

Skenario yang lebih baik adalah scenario ketiga, hal ini dikarenakan energi dan emisi yang dihasilkan lebih kecil. Life cycle stage yang dipilih adalah “use”, karena dari ketiga scenario yang telah dibuat emisi yang dihasilkan pada penggunaan produk lebih besar.


Exercise 4.4 - Hand-Dryer: Input–Output Approach
Consider the hand-drying scenarios again, but this time using the LCA I/O approach
instead of the process-based approach. Assume that the consumer prices for handdrying
are:
Paper towels: $0.01/paper towel; $25/plastic dispenser
Electric hand-dryer: $0.01/kWh; $350/dryer
Use the data in Table 4.17 to estimate energy use and CO2 emissions (Table 4.18)
for each scenario. Note that the transportation to final user is not considered here,
but transportation from raw material is included in sector expenses and impacts of
each sector.

Life Cycle Stage
Process (unit)
Cost per FU (US$/FU)
Energy per $ (MJ/$)
Energy per FU (MJ/FU)
Emissions per $ (kgCO2/$)
Emissions per FU (kgCO2/FU)
Check (gCO2/MJ)
Materials
kg
350
44
15400
3
1050
68.1818182
Fabrication
unit






Use
kWh
54.75
93
5091.75
9.9
542.025
106.451613
Elimination
kg






Total



20491.75

1592.025


Life Cycle Stage
Process (unit)
Cost per FU (US$/FU)
Energy per $ (MJ/$)
Energy per FU (MJ/FU)
Emissions per $ (kgCO2/$)
Emissions per FU (kgCO2/FU)
Check (gCO2/MJ)
Materials
kg
50
23
1150
1
50
43.4782609
Fabrication
unit






Use
unit
5475
15
82125
0.95
5201.25
63.3333333
Elimination
unit
5475
11
60225
0.38
2080.5

Total



143500

7331.75







Tidak ada komentar:

Posting Komentar